Prediction of Ordinal Classes Using Regression Trees
نویسندگان
چکیده
This paper is devoted to the problem of learning to predict ordinal (i.e., ordered discrete) classes using classification and regression trees. We start with S-CART, a tree induction algorithm, and study various ways of transforming it into a learner for ordinal classification tasks. These algorithm variants are compared on a number of benchmark data sets to verify the relative strengths and weaknesses of the strategies and to study the trade-off between optimal categorical classification accuracy (hit rate) and minimum distance-based error. Preliminary results indicate that this is a promising avenue towards algorithms that combine aspects of classification and regression.
منابع مشابه
Comparison of Ordinal Response Modeling Methods like Decision Trees, Ordinal Forest and L1 Penalized Continuation Ratio Regression in High Dimensional Data
Background: Response variables in most medical and health-related research have an ordinal nature. Conventional modeling methods assume predictor variables to be independent, and consider a large number of samples (n) compared to the number of covariates (p). Therefore, it is not possible to use conventional models for high dimensional genetic data in which p > n. The present study compared th...
متن کاملRandom Forests for Ordinal Response Data: Prediction and Variable Selection
The random forest method is a commonly used tool for classification with high-dimensional data that is able to rank candidate predictors through its inbuilt variable importance measures (VIMs). It can be applied to various kinds of regression problems including nominal, metric and survival response variables. While classification and regression problems using random forest methodology have been...
متن کاملPredicting Ordinal Classes in ILP
This paper is devoted to the problem of learning to predict ordinal (i.e., ordered discrete) classes in an ILP setting. We start with a relational regression algorithm named SRT (Structural Regression Trees) and study various ways of transforming it into a rst-order learner for ordinal classiication tasks. Combinations of these algorithm variants with several data preprocessing methods are comp...
متن کاملA Preference Ranking Model Using a Discriminatively-trained Classifier
This paper presents an ordinal regression approach to the query-by-description problem. Instead of returning a single classification, such as genre, or a list of the top N songs assumed to be relevant, this algorithm mirrors choices similar to "like", "skip", "play", and "hate" buttons seen on commercial Internet radio stations. Ordinal regression can be viewed as a hybrid between multi-class c...
متن کاملGenomic-Enabled Prediction of Ordinal Data with Bayesian Logistic Ordinal Regression.
Most genomic-enabled prediction models developed so far assume that the response variable is continuous and normally distributed. The exception is the probit model, developed for ordered categorical phenotypes. In statistical applications, because of the easy implementation of the Bayesian probit ordinal regression (BPOR) model, Bayesian logistic ordinal regression (BLOR) is implemented rarely ...
متن کامل